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Abstract

The purpose of this paper is to simultaneously optimize

decision rules for combinations of elementary decisions. As a

result of this approach, rules are found that make more

efficient use of the data than optimizing these decisions

separately. The framework for the approach is derived from

(empirical) Bayes theory. To illustrate the approach, two

elementary decisions (viz. selection and mastery decisions)

are combined into a simple decision network. A linear utility

structure is assumed. Decision rules are derived both for

quotafree and quotarestricted selectionmastery decisioas

in case of several subpopulations. An empirical example of

instructional decision making in an individual study system

concludes the paper.
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Introduction

Decision problems in educational and psychological testing

can be classified in many ways. An elegant typology of test

based decisions has been given in van der Linden (1985.

1988). Each type of decision making in this typology can be

viewed as a specific configuration of three basic elements,

namely a test, a treatment, and a criterion. In general, the

following four different types of decision problems can be

distinguished: selection, mastery, placement, and

classification.

Educational applications of the four types of decision

making can be found in such fields as the admission of

students to schools (selection), passfail decisions

(mastery), the aptitudetreatmentinteraction paradigm in

instructional psychology (placement), and vocational guidance

situations where most promising schools must be identified

(classification).

In Hambleton and Novick (1973), Huynh (1976, 1977),

Mellenbergh and van der Linden (1981), Novick and Petersen

(1976), Petersen (1976), Petersen and Novick (1976), van der

Linden (1980, 1981, 1987) and Vos (1988), these elementary

decision problems have been studied extensively; these

authors also indicate how analytically or numerically

optimal decision rules can be found using (empirical)

Hayesian decision theory.

The four elementary decisions can be met both in their

pure forms or in combinations with each other. The latter is
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the case, for instance, in testbased decision making in

individualized study systems (ISS's), which can be conceived

of as networks consisting of these various types of decisions

as nodes (Vos & van der Linden, 1987). In such systems

decision making can be viewed as proceeding stvdents through

a network of several of the elementary decisions.

The purpose of this paper is the simultaneous

optimization of combinations of elementary decisions using a

decisiontheoretic approach. Compared with separate

optimization of elemer ary decisions, two main advantages can

be identified. .irst, rules making more efficient use of the

data can be found. Second. utility structures can be made

more realistic. In order to illustrate the approach, in this

paper a selection and a mastery decision will be combined

into a simple decision network. and it will be indicated how

optimal rules for guiding students through such a system can

be derived. The first advantage of the simultaneous approach

is illustrated using this simple system. For instance, when

optimizing acceptancerejection rules in the combined

decisions network, passfail decisions to be made later can

already be taken into account (see also Figure 2). The second

advantage will be explained after the utility function for

the combined decision has been specified.

For each elementary decision, one or more of the

following restrictions may apply (van der Linden. 1988):

(1) Multiple populations. The problem of culturefair

decision making may arise because of the presence of

subpopulations reacting differently to the test items. e.g.
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for populations defined by race or sex. In such a case, the

test items are often be assumed to be "biased" against some

of the populations.

(2) Quota restrictions. For some treatments, due to shortage

of resources, the number of vacancies are constrained.

(3) Multivariate test data. The decisions are based on data

from a whole test battery instead of a single test.

(4) Multivariate criteria. The success of the treatments is

measured by multiple criteria.

In the present paper, only restrictions will be made

with respect to the presence of subpopulations and the number

of students to be accepted for some treatments. First, th,

problem of culture-fair decision making will be considered

for a quota-free selection problem. Next, optimal rules will

be derived for quota-restricted selection problems using

methods of constrained optimization. The final section

presents some empirical examples of optimal cut-off scores

for quota-free as well as quota-restricted selection-mastery

decisions for two subpopulations referred to as the

disadvantaged and the advantaged populations.

Statement of the Problem

As noted before, a well-known example of combinations of

elementary decisions in education is an individualized

instruction system. Figure 1 shows a flowchart of a system in

which a selection decisior is followed by a treatment, here

an instructional module. Then a mastery decision follows,
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after which a placement decision assigns the students to two

different routes through a module both leading to the same

learning objective. Raal-life ISS's often have more decision

points.

Insert Figure 1 about here

Selection-mastery decisions may occur in an ISS, for

iustance, when decisions on the admission of students to the

system should be made. Then a selection test is administered

before the treatment takes place and students promising

satisfactory results on the criterion are accepted for the

first module of the instructional program (see Figure 2).

Furthermore. let us suppose that the criterion is unreliably

measured, which is not uncommon in ISS's. If success on the

criterion is measured by a threshold value separating

"masters" from "nonmasters", then, in fact, after the

treatment a mastery decision has to be taken, and the problem

is a selection-mastery decision problem. Students who have

reached the module objectives may proceed with the next

module. However, students who failed are provided with

supplemental instruction, extra learning time, corrective

feedback, and the like. These students have to prepare

themselves for a new mastery test.

0
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Insert Figure 2 about here

In the following, wt, shall suppose that in the

selectionmastery decision problem g (g k 2) subpopulations

reacting differently to the test items can be distinguished.

Furthermore, it is assumed that the observed selection test

score variable X. the observed mastery test score variable Y.

and the true score variable T underlying Y. i.e. the

criterion score, assume only continuous values. Formally, the

presence of populations reacting differently to test items

implies different cutoff scores for each population.

Therefore, let xci and yci denote the cutoff scores for

subpopulation i (i = 1,2 g) on the observed test

score variables X and Y. respectively. However, the cutoff

:more tc on the criterion score T is assumed to be equal for

each population and is set in advance by the decision maker.

The combined decision problem can now be stated as choosing

values of xci and yci that, given the value of tc, are

optimal in some sense.

In the present paper, linking up with common practice in

criterionreferenced testing, we consider only decisions in

which the decision rules 6 have a monotone form: students are

admitted to a treatment if thei,. test score is above a

certain cutting point and rejected otherwise. They can be

defined for our example in the following way:
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for X < xci

.,or k xci, Y < yci

for X k xci, Y k yci,

stand for the actions to reject a

accepted student, and to advance an

accepted student, respectively.

An appropriate framework for dealing with decision

problems such as the above is (empirical) Bayesian decision

theory (e.g., DeGroot, 1970; Ferguson, 1967; Keeney & Raiff a,

1976; Lindgren, 1976). Besides the actions, probabilities and

utilities are two other fundamental elements in a Bayesian

procedure. In case of an ISS, a probability model predicts

the outcomes of the several possible routes for the students,

and a utility structure evaluates the outcomes predicted. The

optimal procedure as prescribed by Bayesian decision theory

is to look for a decision rule that maximizes expected

utility.

With respect to the first element, it will be assumed

that for each population i, the probability function

Oi(x,y,t) of the joint distribution (X,Y,T) is available.

Note that, due to the presence of different populations

reacting differently to test items, different probability

functions for each population should be assumed.

Also, the decision-maker may have different utilities

associated with different populations. Hence, in addition to

separate probability distributions, the decision-maker has to

2
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specify explicitly his/her utility function for each

subpopulation separatoly.

The utility structure dealt with in this paper is a

linear function of the criterion variable T. seems to

be a realistic representation of the utili43 actually

incurred in mrny decision making situations. I a recent

study, for instance, it was shown by van der Gaag (1987) that

many empirical utility structures could be approximated by

linear functions.

Nonotonicity Conditions

As mentioned before, in a decisionthe, etic approach,

optimal decision rules are found by optimizing expected

utility. However, the restriction to monotone rules in our

paper is only correct if there are no nonmonotone rules with

higher expected utility. It is here that the notion of an

essentially complete class of decision rules comes in handy.

An essentially complete class is defined as a class of

decision rules as good as rules outside this class (e.g.,

Ferguson. 1467, p.55).

In case of separate elementary decisions, the

monotonicity conditions are known (Ferguson. 1967, sect. 6.1;

Karlin & Rubin, 1956). Two conditions have to be met: First

the probability model relating observed test score Z to true

score T should have a monotone likelihood ratio (MLR), i.e.

it is required that for any t2 < ti, the likelihood ratio

f(zIti)/f(zIt2) is a nondecreasing function of z. Second, the

utility function should be monotone; that is, the actions



Simultaneous Optimization

9

should be ordered such that for each two adjacent actions the

utility functions have at most one intersection point. If

these conditions are met, a monotone solution is said to

exist. It should be noted that for the classification problem

these conditions do not hold without modifications (van der

Linden, 1987).

To guarantee that the monotone rule of the combined

decision problem belongs to an essentially complete class,

the following extra condition (Lehmann 1959, sect. 3.3)

should hold:

(2) For any t2 < t1, the likelihood ratio

k(x,y1t1)/k(x,y1t2) is a nondecreasing function in

each of its arguments; that is, for any t2 < t1 and

fixed values of Y = y0 and X = x0, the

likelihood ratios k(x,y0lt1)/k(x,y0lt2) and

k(x0,y1t1)/k(x0,y1t2) are nondecreasing functions of

x and y, respectively.

It will be shown below that, in addition to the

conditions of MLR and monotone utility, condition (2) is

sufficient for a monotone solution to exist for the combined

decj3ion problem. The condition of monotone utility is

elaborated in the next section.
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Linear Utility Function for a

SelectionMastery Decision

Generally speaking, a utility function evaluates the total

consequences of all possible decision outcomes. Formally, it

is a function uji(t) that describes the utility incurred when

action aj (i = 0,1,2) is taken for the student from

subpopulation i whose true score is t.

Mellenbergh and van der Linden (1981) and van der Linden

and Mellenbergh (1977) use a linear utility function for

determining optimal cutting scores on the separate decisions.

Here, their function is restated for the combined decision

problem as a linear function in T for subpopulation i (see

also Figure 3):

boi(tct) + d0i

(3) uji(T) = bli(ttc) + dii

b
2i(ttc) + d2i

for X < xci

for X xci. Y < Yci

for X z xci. Y Z Yci,

where boi, b2i > O.

For each action aj (i = 0,1,2), this function consists

of a constant term and a term, proportional to the difference

between the criterion perfcrmance t of a student and the

minimum level of satisfactory criterion performance tc. The

parameters doi, dii, and d2i can represent, for example, the

costs of testing or the cost of following an instructional

module. The condition boi, b2i > 0 is equivalent to the
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statement that for the rejected students and the accepted

students who passed the mastery test, utility is a strictly

decreasing and increasing function of t. respectively.

It should be noticed that it cannot be said beforehand

whether the utility assc:iated with action al, i.e. uli(t),

is increasing or decreasing, because the utility of the

combined decision depends on the utilities associated with

the selection as well as the mastery decision. Depending on

either the influence of the utility associated with the

acceptance or with the fail decision is the most important,

uli(t) is tin increasing or decreasing function of t,

respectively. Figure 3 displays an example of a combined

linear utility function for bii > 0.

Insert Figure 3 about here

In the Introduction, it was remarked that one of the

main advantages of a simultaneous approach was that more

realistic utility structures could be used. Formula 3 nicely

demonstrates how a utility function defined on the ultimate

criterion of the ISS ("master" or "nonmaster") can be

properly brought into a previous decision (selection

decision).

Gross and Su (1975) pointed out that 'fair' selection is

a question of utilities. Whether a selection procedure is

believed to be fair to the various subpopulations which can
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be distinguished depends on the utilities of those involved

in the selection process. From this point of view, the linear

utility model can be used to allow for the fact that the

students might belong to a disadvantaged or advantaged

subpopulation by choosing separate parameter values for the

subpopulations involved. Suppose, for example, that

subpopulation h is considered more advantaged than i. In

choosing values of the parameters of the linear utility

function his can be taken into account by requiring that

incorrect decisions are considered worse for subpopulation

than for h, while correct decisions are considered more

valuable for i than for h. This amounts to choosing values of

the elope parameters such that boi > boh and b2i > b2h for

all t. Since bid > 0 implies that the influence of the

utility associated with the acceptance decision is the most

important, it will hold that bid > bill for bli, blh > 0.

Following the same line of reasoning, it is required that

bid < bill if bid. blh < 0.

The possible actions are supposed to be ordered as ao,

al, and a2. Using the fEct that, as can be seen from Figure

3, the difference between the utilities change si,n precisely

once, the condition of monotone utility for the utility

function defined by Formula 3 can be expressed as

7
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(4) uli(t)-uoi(t) = (bleboi)(t-tc)

+ d -d
Oi > 0 for t > t

10.1

uli(t)-uOi(t) = (b +b
Oi

)(t-t
c

)

+ d -d
Oi

< 0 for t < t

(5) uli(t)-uil(t) = (b2ibii)(t-tc)

+ d2i _dli > 0 for t > t
12.i

uli(t)-uli(t) = (b2i-bli)(t-tc)

+ d2i -dli < 0 for t < t
12.i.

where tio.i and t12.i (tio.i 5 t12.1.) denote the T

coordtaates cf the intersection of utility line uli(t) with

uoi(t) and u2i(t). respectively. Furthermore, it is assumed

that the functions uli(t)-uoi(t) and u2i(t)-uli(t) are

strictly increasing functions of t, implying that the slope

parameters (bli+boi). (b2i-bli) > 0. Using the fact that b0i,

b2i > 0, this means that the following condition should hold

for the utility parameter bii:

(6) b
2i > b

11 if b > 0

b
Oi > -b

11 if b < 0.

S
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Optimal Cutting Scores for Quota-Free Selection

In this section, optimal cutting scores are derived for the

combined decision problem in case of quota-free 'selection.

That is, we are looking for pairs of cutting scores (xci.yci)

such that the overall expected utility is a maximum.

Overall Expected Utility

In maximizing overall expected utility, first the expected

utility of a random student from the ith subpopulation will

be calculated, which, as monotone solutions are looked for,

can be written as

(7) E[ui(Tlxci.yci)] = JXciJ [boi(tc-t)+doi]wi(x.t)dtdx +

iLif1724:.(bli(t-tc)+dii]ni(x.y.t)dtdydx +

iLifLifl.,[1:2i(t-tc)+d2i]ni(x.y.t)dtdydx.

where wi(x,t) is the joint probability function of X and T in

subpopulation i. Let Ei(Tlx), qi(x), ki(x.y). and Ei(Tlx.y)

denote the regression function of the criterion variable T on

X. the probability function of X. the joint probability

function of X and Y. and the regression function of the

criterion variable T on X and Y in subpopulation

respectively, then (7) can be written as

9
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(8) E[ui(Tlxci.yei)] = iss (boiitc-Ei(Tlx))+dolikii(x)dx

I:
ci

([100i+bli][Fi(Tlx)-tc]-

+ dli-doi)qi(x)dx

+ P;ciii;c1{ [b21bli] Eq. (Tix.y)-tc

+ d2i-d1i)ki(x,y)dydx,

Now, the decision procedure is viewed as a series of

separate decisions, each of which involves one random

student, and it follows that the overall expected utility is

a weighted average of the expected utilities for the

individual populations. Thus, overall expected utility of the

combined decision problem is:

(9) E[u(Tlx
ci

,y )] = E piE[ui(Tlx
ci

,y
ci

)],
1 =1

g
where pi, E pi = 1, is the proportion of students from

1=1
subpopulation i in the total population of students.

In quota-free selection there is no restriction as to

the number of students that can be accepted for the

treatment. Therefore, Formula 9 is r,ximized if the expected

utility of a random student is maximized. This is done by

maximizing Formula 9 for each subpopulation separately.

The maximum of Ei[u(Tlxci,pc4)] now depends only on the

second and third term in the ..ght -hand side of (8), because
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the first term is independent of xci and yci. Using a result

from decision theory (see e.g., Chuang. Chen. & Novick, 1981)

stating that for any prior distribution of t. E[u(Tlz)] is a

nondecreasing function of z if f(zIt) has MLR and u(t) is a

nondecreasing function of t. and assuming monotonocity

condition (2), it follows from (5) that Ei(u2i(t)-u1i(t)lx.y]

= [b2i-bli][Ei(Tlx.y)-tc]+d2i-dli is a nondecreasing function

in each of its arguments. Since (b2i-bii) > 0. this implies
a

that
ax ay

Ei(Tlx.y) and Ei(Tlx.y) > 0. Similarly, using (4)

instead of (5). it follows that Eituli(t)-uoi(t)lx] =

[bli+boi][Ei(Tlx)-tc]+dii-doi is a nondecreasing function of

x. implying that, since (bli+boi) > 0. Ei(Tlx) > 0. Using
dx

qi(x), ki(x.y) k 0. it follows now that the sign of the sum

of the second and third term changes only once from negative

to positive, and. therefore. E[ui(Tlxci.yci)] will reach its

maximum for one pair of cutting scores (xci.yci)

Maximizing Expected Utility for a Random Student

Necessary conditions for the optimal values of the cutting

scores, say x'ci and y'ci. optimizing the expected utility

for a random student from subpopulation i, Ei[u(Tlxci.yci)].

can be obtairid by differentiating Ei[u(Tlxci.yci)] with

respect to xci and yci. setting the resulting expressions

equal to zero, and solving simultaneously for xci and yci.

Using the property that for any bivariate distribution

f(x.y), it holds that

21
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,)
f(z y)dydz = - 2- I" f" f(z y)dydz = f(z.$)dx.

dS X « as s

For the derivative of Ei[u(TIzcioyci)] with respect to Yci

this results in

a
EiNalxcioyci)] =(10)

= si(yci) r:ci([bli-b2i][Ei(TIzoyci)-tc]+dii-d2i)

zi(xlYci)dx = 0.

where zi(zlyci) and si(y) denote the posterior probability

function of X given Y = yci and the marginal probability

function of Y in su]population i, respectively. Since si(y)

0 (the possibility of si(y) = 0 will be ignored), it follows

that (10) can be replaced by

(11) fes ([b2i-bli][Ei(TIzoyci)-y+d2i-dti)zi(zlyci)dx = 0.
zci

Similarly. differentiating Ei[u(TIzcioyci)] with respect to

zci. using qi(z) k 0 (the possibility of qi(z) = 0 will also

be ignored). results in
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(12) Iboi+bliHEi(Tlxci)-tc]+dli-doi +

re {Op -b HE (Tlx
i
,y)-t

c
]+d

21
-d

11
)m (yix

ci
)dy = 0,yci 21 11 c

with mi(yIxci) being the posterior probability function of Y

given X = xci. Now. solving the system of Equations 11 and 12

for xci and Yci. one obtains the optimal cutting scores x'ci

and y'ci.

Linear Regression

For given regression functions and probability density

functions, the optimal quota-free decision strategy is

represented by the system of Equations 11 and 12. If the

monotonicity conditions are not strict or it does not hold

that si(y) or qi(x) > 0 in the neighborhood of the solution.

the optimal decision strategy may not be unique. Throughout

this paper it will be assumed that conditions like these are

fulfilled.

Since the relations between the test scores and the criterion

(true score) in the regression functions are not directly

observable, psychometric models are needed to estimate these

relations. Possible psychometric models are the linear

regression functions 8i+Fix and ai+ftix+Tiy for Ei(TIx) and

Ei(Tlx.y). respectively. Since the probability functions of

T given X =x. and T given X=x and Y=y in subpopulation i are

normal (see e.g., Johnson & Xotz, 1970), it follows that they

belong to the exponential family, and, hence, they do possess
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the property of MLR and MLR in each of its arguments,

respectively (see e.g., Chuang, Chen, & Novick, 1981). In

addition to the properties -- Ei(Tlx) = Ti,
a
Ei(Tlx.v) =

a dx
pi, and Ei(Tlx,y)= Ti > 0 (see e.g., Lord & Novick, 1968).

it then follows that the monotonicity conditions are

fulfilled. Assuming linear regression, it can be shown from

classical test theory that the linear regression of T on X is

given by

(13) Ei(TIX) = Ei(Y1x) = + Pi(0y.i/ax.i)(X-41x.i).

py.i. px.i. Pi. ay.i. and ax.i being the population means of

Ti and X. the population correlation between X
i

and
Ti.

and the population standard deviations of Yi and Xi,

respectively. From (13), it follows that

(14) ri = pi(ay,i/ax,i)

= Py,i riPx,i.

Furthermore, using results from classical test theory,

it can be shown that the linear regression of T on X and Y

can be written as

(15) E (Tlx.y) =

PY,i (alf.i/aX,i)1(PiPYY',Pi)/(1Pi2))

(x-µ%,i) l(pIrr,f-PiOn',1)/(1-912))(Y-PY,1).

fro
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pry..i being the reliability coefficient of Yi. From (15), it

follows Gnat

(16) Pi = (aLifai.i)((pipn,.ipi)/(1--pi2))

Ti = (PYY'.0)11PYY'.i)/(17//i2)

ai = +

All quantities appearing in (14) and (16) can be estimated

straightforward; thus, estimates of the linear regression

functions can be calculated.

Iterative Solution in Case of the Bivaria

In order to solve the system of Equations 11 and 12 for zci

and yci, the decisionmaker must specify the joint

probability function of I and Y. It is assumed that the

variables I and Y have possibly different bivariate normal

distributions in each subpopulation. Assuming that the I and

Y scores are in their standardized form, this can be written

as

(17) ki(zwyN) =

(2141pi
2]-1

exPL(zN 2pizNyeyN2
)/(2(1pi 2

))) ,
r 2

25
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where xN and yN denote the standardized scores (x-px)/ax and

(y-py)/ay of X and Y. respectively. For the standardized

bivariate normal distribution in (17), the conditional

distribution of XN given YN = yn is normal with expected

value piyN and variance (1-pi2). Likewise, the distribution

of YN given XN = xN is normal with expected value pixN and

variance (1-pi2).

Substituting ai + Dix + Tiyci and N(o v 1-pi2) into

Equation 11 for Ei(Tlx.yci) and z,(x-Iv )' respectively,

and using the property that the primitive function of xe-Mx*

is equal to -e-Mx*, it follows that Equation 11 will take the

form

(18) f(x(..rci) =

1(b2i-bli)(ai+PiPX.i+Tilrci+PiaX.iPilrNxi-tc)4"

d21-dii)ax.i(1-41(x11.ci-P gli.ci)//(1-Pi2)] 3+

(b2i-bli)Piax.i2;(1-pi2)

91(xN.ci )/;(1-pi2)] = 0,

where C.] and 9[.] denote the standard normal distribution

function anl the standard normal density. respectively.

Similarly, substituting Oi + rixci. ai + Pizni + Tiy,

and N(pixN.ci. 1-p.2' into Equation 12 for Ei(Tixci).

Ei(Tixci.y). and mi(yNixN.ci). respectively, results in
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(19) g(xci.yci) =

f(boi+bli)(8erixcl-tc)+dli-doi)+((b2i-bli)

(ai+pixci+Ti My i+TiPiCry iXN citc) 442i-41i)

(1 -8((yNxi -pixNxi)/1(1 -pi2)))+(b2i-bli)

Tior.i;(1-p 2 )91(YN.ci-PixN.ci)/1( 1 -pi2)] = O.

The system of Equations 18 and 19 cannot be solved

analytically for xci and yci, but it can be solved

iteratively using Newton's method for systems of nonlinear

equations (see, e.g., Ortega & Rheinholdt, 1970). Updated

estimates x'ci.J.4.1 and y'ci.j+1 after iteration J +1 are

obtained using the following formulas:

a a
(20) fwcf.0]

ci ci
= x'cLJ [(f

a a
Y'ci.j+1 = y'ci.j [(g f - f g)/J(f.g)].

ci ci

a
where J(f,g) = a_ f g- a

7-- g 2 f represents the
vAci urci vAci ulrci

Jacobian of the functions f(xci.yci) and g(xci.yci) It is

recommended that the cut-off score tc on the true score scale

T is used as a first approximation to x'ci and y'ci

In order to solve the nonlires2 system of Equations 18

and 19 via the iterative procedure given in (20), the partial

derivatives of f(xci,yci) and g(xci.yci) are needed. They are

given as
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a
(21) ai-- f(xci.yci)

ci

(22)

( 23 )

-V(1-pi2)]-49[(zN.ci-piyN.ci)/1(1-pi2)]

f(z
i

.yci ) =

urci c

(b2i-b1i)01.1/07.if(Tigy.i+PiPiax.i)

(1 -41[(xN.ci 91yN.c1)11(1 -pi2)1)+

pi/f(1-pi2))9((xN.ci-piyN.ci)/f(1-p12)]

(ai+pixci+Tiyci-tc))+(d2i-dli)pinf(1-p12)]

ax,i9((xN,ci-PiYN,ci)//(1-pi2) ] lay,i,

a

;i-- g(xci.7ci)
ci

(b
Oi

+b )1' +

(b21b )/a t(p
i
a +T aY,i )

(1 -4[(Y11.ci-PixN,ci)/1(1 -Pi2)])*

pi/ f(1-pi2)]9[(YN,ci-PoLci)/f(i pi2)]
(0ePiXcergci-tc)}4.(d2rdli)pinf(1-pi2)]

(IWYN.ci-PixLci)/1(1-912))/aX,i'

(24)
a

aYci
g(

xci

,

Yci

) =

-[1(1-pi2 )] -49[(rN,ci-PixN,ci)/1(1 -Pi2)]

f(b2i-bli)(ai+pixci+Tiyci-tc)+d2i-dliHay,i.
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An interesting special case of 'the combined linear

utility function arises when doi = dii = d2i. In that case.

all utility parameters dii = 0.1,2) vanish from Equations

18 and 19. In other wo.T, if the amount of constant utility.

dji. for each action is equal. then there is no need to

choose values for dji in determining the opt.mal cutting

scores z'ci and y'ci

It can be shown (Lord & Novick. 1968. sect. 17.2) that

the standard normal distributions appearing in (18)-(24) are

almost interchangeable with logistic functions for a scale

parameter equal to 1.7. The logistic model will be preferred

in the iterative procedure because it is easier to work with

mathematically than the standard normal model. Usiag this

approximation, we may rewrite the standard normal

distributions as follows:

1[(xN.ci -PiirN.ci)/1" -P12)] =

(1+expl-4'7(IN.ci-PlYN.ci)/1(1-Pi2))]-1'

41(yN.ci-pixN.ci)/1(1-p!:)] =

(1+exp( -1.7(
YN.ci-PixN.ci

)/;(1 i2))] -1.

The iterative procedure is implemented in a computer program

called NEWTON.
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Special Solutions

The optimal solution for the separate mastery and selection

decision can Joth easily be derived from Equations 11 and 12

by imposing certain restrictions on zci and yci.

respectively.

First, putting zci = in Equation 11, that is

accepting all students, and using r zi(xlyoi)dx = 1,

Equation 11 will take the form

(25) = 0.

Putting both utility lines 1111.W and u2i(t) in Formula 3

equal to each other, it appears that the t coordinate of the

intersection, t12.1., is equal to te(diid2i)/(b2ibli),

which implies (25) can be replaced by Ei(Tlyci) = t12, i. This

solution yields the same optimal cutting score y'ci as the

one given by van der Linden and Mellenbergh (1977) for the

separate mastery decision. Analogous to the combined decision

prober, a psychometric model is needed to specify the

regression function Ei(Tiyci) For this purpose, the

classical test model with linear regression (Lord & Novick,

1968, p.55) will be assumed, which is known as Kelley's

regression line:

(26)
Ei(Thrci) = PYY',i3rci (1.1)Yr.i)11Y,i.

Substituting (26) into (25), gives

.30
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(27) y'ci = py.i + (tc -144+ 'll-d2i)/(b2i-b1i))/Pyr.i.

Analogous to the derivation of the optimal separate

mastery decision from (11), the optimal separate selection

decision can be derived from (12) by putting yci = that

is, advancing all accepted students. Doing so, and using

Formula 3, it follows that

(28) Ei(Tlxci) = t02,1 = tc (d0i-d20/(30114321),

where t02.i denotes the t coordinate of the intersection of

utility line uoi(t) with u2i(t). Also, this optimal solution

is the same as the one reached by Mellenbergh and van der

Linden (1981) for the separate selection decision. Adopting

the linear regression function from classical test theory

again, it follows from (28) that the optimal cutting score

x'ci can be expressed in closed form as

(29) x'ci = mx.i + (tc-mx,i+(doi-d2i)/(boi+b2i ))/ftr.i.

where pxx..i denotes the reliability coefficient of Xi.

An interesting case arises when dii = d2i in Equation

27. Whenever this occurs, both utility lines uii(t) and

u2i(t) intersect at tc, and thus, Equation 27 takes the form

(30) Y'ci = MY,i (tc-PY,i)/PYY..i.

31
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In other words, if the 'mounts of constant utility associated

with the actions retaining and advancing a student in the

separate mastery decision are equal or there are no constant

utilities at all, then there is no need to assess the

parameters bli and b2i. In the numerical example, this

situation will be further elaborated.

Similarly, all utility function parameters vanish from

(29) whenever doi = d2i; thus, (29) can be further simplified

to

(31) x'ci = 1.1X4 (tc-1.11(,i)/PEU,i

Optimal Cutting Scores

for Quota-Restricted Selection

In quota-restricted selection only a fixed number of students

can be accepted for the instructional program. The selection

constraint can be expressed as

g fa,
(32) po = E pi[Proba xci)] = E q,(x)dx],

i =1 i=1 xci

g
where 0 < po < E pi = 1 represents the fixed proportion of

i=1
all students that can be accepted.

The values of x'ci and y'ci optimizing the overall

expected utility of the combined decision problem, can now be

found by introducing the selection constraint into the
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function to be optimized (Equation 9) through a Lagrange

multiplier X:

(33) L(xci.yci.) = E piE[ui(Tlxci.yci)]
1=1

+ X(po-E
g
pip gioodx]).

i=1 lei

where X is a constant.

Differentiating L(xci,yci,X) with respect to yci and

xci, setting the resulting expressions equal to zero, and

using pi > 0, yields

a
(34) s=-- E[ui(Tlxci.Yci)] = 0.

'Yci

(35) ;17-- mi(Tixci.yei)] xcli( zti) = 0.

ci

As can be noticed from Equation 10, the solution to Equation

34 is the same as the solution for the case of quotafree

selection given by Equation 18.

The first term in the lefthand side of Equation 35

represents the derivative of the expected utility of a random

student with respect to xci in the unrestricted situation

(Equation 12). Substituting this partial derivative into

Equation 35, and using qi(x) t 0, it follows that

.13
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(36) +

OD

((b2i-bli][Ei(Tlxci,y)-tcl+d2i-dii)mi(y1xci)dy = 0.
Yci

Inserting the expressions for the linear regression functions

and N(pixicci, 1-pi2) for mi(ykilxicci), and integrating

Equation 36, results in

(37) h(xci.yci) =

((b0i+bli)(8i+rixci-tc)+dii-doi-X)+((b2i-bli)

(ai+pixci+Tipy.i+Tipiay.ixN. ci-tc)+d2i-dii)

(1 -4[(YN,ci ixN,ci)/;(1-pi2)1)+(b2i-bli)

Ticry.i;(1-pi2 )9[(YN,ci-13 ixN,ci)/;(1-912)] = 0.

Since it has been assumed that the joint distribution of X

and Y is a possibly different bivariate normal distribution

in each population, it follows that qi(x) is a normal

distribution with mean px.i and variance ax.i2 (see, e.g.,

Johnson & Xotz, 1972). Hence, the restriction of Equation 32

can be written as

(38) v(xcloca .
g

. xcg) = E pif1=4( Po = 0.
i=1

Now, the solution for the quota-restricted selection model is

found by solving the system of Equations 18, 37, and 38 for
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the (2g + 1) unknown parameters zci, yci. and X. Note that

with quotarestricted selection, unlike quotafree selection,

the optimal cutting scores z'ci and y'ci (i = 1 ..... g) are

dependent upon each other.

In order to apply Newton's iterative method to solve the

given system of nonlinear Equations, the partial derivatives

are required again. From (37) and (19). it can easily be
a averified

a

rified that ui.- h(xci.yci) = Ea- g(xci.yci).
a

aa h(xci.Yci) g(xci.yci). and a h(xci.Yci) = 1.
ci

The derivatives of f(xci.yci) and g(xci.Yci) with respect to

zci and yci were given in Equations 21 until 24,

respectively. Furthermore, it follows from (38) that

a
(39) =--- v(z ,zc2 .

ci cl xCg) =

Analogous to the quotafree selection model. $19 can

easily be seen from Equations 18, 37, and 38, no values for

the utility function parameters dji (3 = 0,1,2) have to be

specified when the amount of constant utility for each action

is equal.

A computer program called LAGRANGE has been written to

obtain an optimal decision rule. In the program, the optimal

solution (z'ci.y'ci) of the quotafree selection model can be

used as a first approximation in the iterative procedure. A

numerical example illustrating the procedure is given in the

next section.
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A Numerical Example

Tho linear utility model for optimal selectionmastery

decisions was applied to a sample of 43 freshmen in medicine.

Both the selection and mastery tests consisted of 17 free

response items on elementary medical knowledge with test

scores ranging from 0-100. The treatment consisted of a

computeraided instructional (CAI) program.

Due to prior knowledge, the total population of 43

students could be distinguished with respect to elementary

medical knowledge into a disadvantaged and an advantaged

subpopulation of 27 and 16 students, respectively. Let the

disadvantaged and advantaged population be referred to as

subpopulation 1 and 2. respectively. The normal models

assumed for the distributions Xi and Yi showed a satisfactory

fit to the test data for a KolmogorovSmirnov goodnessoffit

test with pvalues of 0.869. 0.934. 0.867. and 0.993 for Xi.

Y1. 12. and Y2. respectively. The differences between the

theoretical and observed cumulative distribution functions

were 0.0686. 0.1035. 0.1495. and 0.1067. respectively.

The teachers of the course considered students as having

mastered the subject matter if their test scores were at

least 55. Therefore, tc was fixed at 55.

The means, standard deviations and correlation between X

and Y. were computed for each subpopulation using the maximum

likelihood estimates. Furthermore, the reliabilities of the

test scores were computed as coefficient a (Cronbach, 1951)
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for each subpopulation. The results of these computations are

shown in Table 1.

Insert Table 1 about here

First, the quotafree situation is considered. Since

population 2 was considered more advantaged than 1, it should

hold that b01 > b02, b21 > b22, b11 > b12 for b11, b12 > 0.

and b11 < b12 for b11. b12 < 0. Besides these conditions for

the utility parameters in Formula 3. condition (6) should

hold for the utility parameters bji (3 = 0,1,2; i = 1,2).

Substituting the values of the statistics of Table 1 into

Equations 14 and 16, and using the computer program NEWTON,

Equations 18 and 19 were then solved for zci and yci (i =

1,2) with tc as starting values. To illustrate the dependence

of the results on the utility structure, optimal cutting

scores were computed for 10 different values of the utility

parameters bji and dii (3 = 0,1.2; i = 1,2). The absolute

values of bji and dii for utility function 1 until 5 were the

same as the absolute values for utility function 6 until 10.

However, the sign of b11 was taken negative in the last five

runs, taking into account the fact that the sign of bii could

not be specified beforehand. The results are reported in

Table 2.
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Insert Table 2 about here

As can be seen from Table 2. the consequence of increasing

the parameters b0i and b2i (i = 1.2) is a decrease of the

cutting scores. Furthermore, inspection of Table 2 shows that

a decrease of the amount of constant utility, dii (3 = 0.1.2;

i = 1.2), implies that the cutting scores have to be raised.

Finally, it can be seen that for the simultaneous

solution the optimal selection scores are lower for the

disadvantaged than for the advantaged group. Conversely, the

optimal mastery scores are lower for the advantaged group.

This is an important conclusion, which can be argued by the

fact that the disadvantaged students should be accepted

sooner. On the other hand, however, they should stay longer

in the treatment to be sure that they have mastered the

instructional unit sufficiently so that they may proceed with

the next unit.

Using Equations 27 and 29, the optimal cutting scores

were also computed for the separate mastery and selection

decisions. Since no constant amounts of utility were assumed

for utility functions 2 and 7. Equations 30 and 31 were used

to compute the optimal cutting scores for these two utility

specifications. The results are also reported in Table 2.

Table 2 shows that the optimal selection as well as the

optimal mastery scores in the separate model have been raised

compared to those in the combined mIdel.
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To give an impression of the gain in overall expected

utility by using the simultaneous approach, the ratio of

overall expected utility for the separate and simultaneous

solution has been calculated. The overall expected utilities

have been calculated by substituting the optimal cutting

scores from Table 2 into Equation 8. The third term in the

right-hand side of (8) has been computed by using numerical

integration methods, while the first and second term have

been integrated analytically yielding respectively

f(boi+bli)(8i+ripx.i-tc)+d1i-doi)

(1-4(xN,cii)4411,iri(30144311)9(xN,ciL

The computer program UTILITY calculates the overall expected

utility; the results are displayed in Table 2.

Finally, the quota-restricted situation is considered.

The proportions pi (i = 1,2) of the student population

belonging to each subpopulation were set estimated as ni/n,

where n represents the total sample size and ni represents

the number of students in the sample in subpopulation i. The

proportion PO of the total student population that could be

accepted for the instructional treatment was arbitrarily set

equal to 0.333. Using the computer program LAGRANGE, the

system of Equations 18, 37, and 38 were then solved for xci

and yci (i = 1,2) with the optimal solution of the quota-free

ra

-t
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situation as starting values. The optimal cutting scores were

computed again for 10 different values of bji and dii; the

results are shown in Table 3.

Insert Table 3 about here

From Table 3 it can be seen that the optimal selection

Scores x'ci and x'a in the quota-restricted model have to be

raised compared to those in the quota-free model. This result

is in accordance with our expectations, because fewer

students can be accepted in the restricted situation. Also,

it follows from Table 3 that the optimal mastery scores

and y'c2 are higher than for the quota-free model.

Finally, it can be noticed that, analogous to the quota-

free situation, the optimal selection and mastery scores are

lower and higher for the disadvantaged than for the

advantaged group, respectively.

Discussion

In this paper an approach to instructional decision making

for combinations of elementary decisions has been presented.

A useful application of simultaneous decision making can be

found in the area of instructional decision making in ISS's.

As an example, two elementary decisions (viz. a selection and

a mastery decision) were combined into a simple ISS to

40



Simultaneous Optimization

36

indicate how by simultaneous optimization of such networks,

optimal rules for proceeding students through ISS's can be

designed witWn a Bayesian decisiontheoretic framework. The

utility structure adopted in this combined decision problem

was a linear utility function.

Further examination of the "best" way to represent more

complicated instructional networks of combinations of

elomontary decisions seems a valuable line of research. Such

instructional networks can also !Je forAalized with the aid of

Bayesian statistics and optimal rules for these simultaneous

optimization problems can be found.

Also, more efforts are needed to examine other more

realistic forms utility functions might take in certain

educational applications. For example, the normal °give

utility function (Novick & Lindley, 1978) which takes utility

to be a nonlinear function of the true score. Such a utility

structure might be adopted, for instance, when it is

reasonable to assume a levelingoff effect.

Finally, an interesting line of research seems to be to

design "optimal CAInett...aks" using the method of simulation.

On the basis of the derived theoretical optimal decision

rules, then, for a simulated distribution of students, it can

be determined in which instructional network the shortest

time is spent to reach a certain final mastery level.

41
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Author's Note

Portions of this paper were presented at the European Meeting

of the Psychometric Society, 1987, Enschede, The Netherlands.

The author is indebted to Wim J. van der Linden for his

valuable comments on earlier drafts of the paper and to Jan

Gulmans for providing the data for the empirical example.

The computer programs NEWTON, LAGRATr' and UTILITY are

available on request from the author.
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Table 1

Statistics Selection and Mastery Tests (X and Y)

Statistic Disadvantaged Advantaged

Mean 50.875 62.626 56.453 67.148

Standard Deviation 10.981 11.645 11.674 13.344

Reliability 0.762 0.775 0.783 0.813

Correlation 0.8564 0.8685

4 7
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Sown/Cations

Disadv. Adv.

(1) b01.4.5 do -a
b11.2 d11.-3
b21.3

(2) b01.3.5 dol.°

b023
b121.5
b22.2.5

b02.3

d02. -2

d12=-3
d32. -4

d024
b11.2 du.° b121.5 d12'0
b21"3 d21°9 b22'2.5 d22'1)

(3) b01.3.5 d01.-3 bora d02=-3b112 d11.-7 b12.1.5 d12"-7
b21.3 d21.-12 b22.2.5 d22. -12

(4) b01.5 dor-a b02.3.5 d02. -2oll.a d11.-3 142.2 d12.-3b21.6
d21.-4 b22.5 d22. -4

(5) b01.15 d01.-2 b0214 d02.-2
b11.3 d11. -3 b12.2 c112.-3
b21.10 d21. -4 b22'9 d22..4

(6) b01.3.5 d01.-2 b02.3 d02.-2
b11.-2 d11.-3 b12.-1.5 d12.-3
b21=3 d21.-4 b22.2.5 d22.-4

(7) b01.3.5 d0100 b02.3 402'17
.111.0 b12'-1.5 d12'0

b21.3 d21°9 b22.2.5 d22.O

(8) b01.3.5 d01.-3 b02.3 d02.-3
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100
Disedv. Adv.

27.16 68.90
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spec . ilicatioss
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b22.2.5
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b02.2.S
b12=-2
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b02.14

b12 -2
1,229
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d12. -3

d22"-d

dOrd
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d22.0
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402'4
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7c1.47.73

sc1=56.94

Tc1044.15

zomS6.S2
7c1=0.94

zc1.56.52

7c1"7.71)

zci.S6.52
7c1=44.57

zcI.SS.47
7c1.47.57

zc1.S7.01
yc1.44.11

zc2.59.34
Tc2.47.21

zc2.59.34

7c2=46.36

zc2.59.34

7c2=50.27

zc2.60.19

7c2=47.09

zc2.5111.56

yc2.46.07

zo2'59.27
7c2=46.54

zc2.59.27
7c2=46.54

zc2=S9.27

7c247.S7

zc2=60.15
7c2.46.91

za.5111.53

Tc2.46.01
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Figure Capttons

Figure 1. Example of an individualized study system

Figure 2. A system of one selection and one mastery decision

Figure 3. Example of a linear utility function for a

selection -iastery decision (bli > 0)
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